### KUMHO TIRE **PRODUCT DATA GUIDE** MEDIUM COMMERCIAL TRUCK

### KUMHO TIRE NAMING SYSTEM 04 MEDIUM COMMERCIAL TRUCK 07





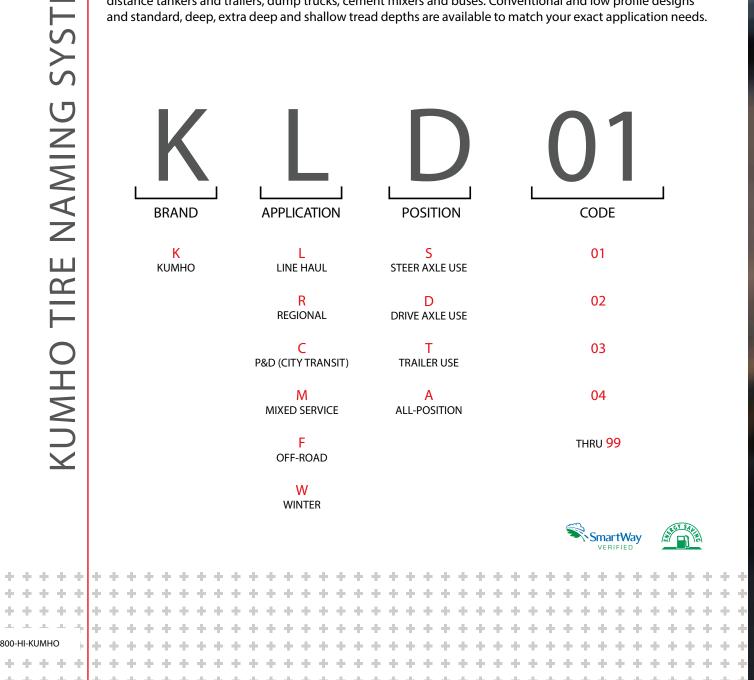
### WARRANTY POLICIES 29

 Warranty Coverage 30 – What is warranted and who is eligible under this warranty - What is covered by the warranty and how long 30 Casing Credit

### CONTACT US 31

### **KUMHO TIRE**

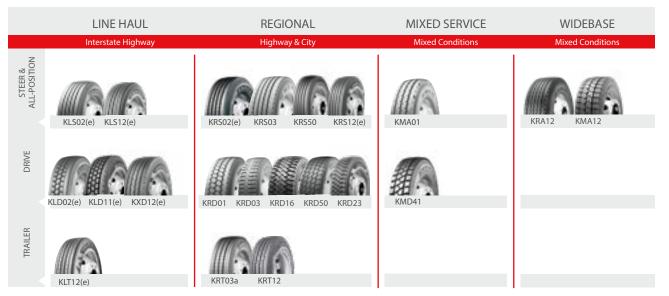






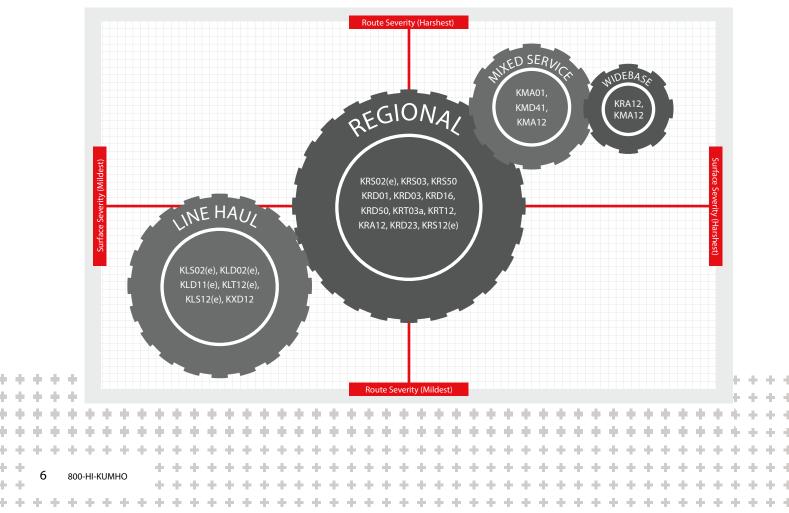

### MEDIUM COMMERCIAL TRUCK

EN


Kumho Tire offers a wide selection of medium commercial tires for regional and local delivery trucks, long distance tankers and trailers, dump trucks, cement mixers and buses. Conventional and low profile designs and standard, deep, extra deep and shallow tread depths are available to match your exact application needs.






### **TECHNICAL DATA**

#### **APPLICATION CHART**



#### PRODUCT POSITIONING MAP

÷







# **KLS02(e)**

The KLS02e utilizes design and engineering advancements to deliver improved steering stability, even tread wear and maximum mileage over the life of the tire.

#### **BENEFITS & TECHNOLOGY**

- Outstanding wet handling performance, provided by the five-rib, multi-sipe tread design
- Stabilized footprint pressure and better wear because of optimized belt widths
- Increased heat dissipation at the belt edge and minimized irregular wear are advantages of the top decoupling groove design
- Enhanced retreadability comes from groove bottom protectors designed to prevent stone drilling and stone retention

| \ <b>\</b> /L | HEEL POSIT | ION       |
|---------------|------------|-----------|
| VVI           | ILLL FOSH  | ION       |
| TRAILER       | DRIVE      | STEER     |
| (PERMITTED)   |            | (PRIMARY) |
|               |            |           |

**APPLICATION** LINE HAUL REGIONAL P&D MIXED OFF-ROAD (PRIMARY) (PERMITTED)





ALL REY SAL

+ ++ ++ + $\bullet \bullet \bullet$ 

SmartWay

# KLS12(e)

The KLS12(e) is equipped with an advanced design and engineering characteristics that allows for higher mileage, low rolling resistance and durability in line haul steer applications.

#### **BENEFITS & TECHNOLOGY**

- Advanced decoupling groove design for resistance to cracking and tearing at the groove
- Stiff shoulder blocks and balanced distribution of contact pressure for lower rolling resistance and even wear
- Staggered interior tread design for prevention of stone drilling and heat dispersion
- Staggered interior tread design for prevention of stone drilling and heat dispersion

|         | V                      | Ν   |        |                    |       |    |       |   |
|---------|------------------------|-----|--------|--------------------|-------|----|-------|---|
|         | <br>RAILER             |     | DRIVE  | STEER<br>(PRIMARY) |       |    |       |   |
|         |                        | APP | LICATI | ON                 |       |    |       |   |
| LINE HA | <br>REGION<br>(PERMITT |     | P&D    | Ν                  | AIXED | OF | F-ROA | D |
|         |                        |     |        |                    |       |    |       |   |
|         |                        |     |        |                    | Ļ     |    |       |   |

#### **O** Ħ Ο

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in) | Section<br>Width<br>(in) | Approved<br>Rim Width | Tread<br>Depth<br>(1/32") | RPM | Max<br>Speed<br>(mph) | Weight |          |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|---------------|--------------------------|-----------------------|---------------------------|-----|-----------------------|--------|----------|
| 2140923         | 11R22.5      | 14 Ply/G                  | 8.25                   | 6175                                                       | 5840                                                     | 105                                   | 41.3          | 10.9                     | 7.50                  | 18.0                      | 503 | 75                    | 121.9  | SmartWa  |
| 2203633         | 11R22.5      | 16 Ply/H                  | 8.25                   | 6610                                                       | 6005                                                     | 120                                   | 41.3          | 10.9                     | 7.50                  | 18.0                      | 503 | 75                    | 121.9  | SmartWa  |
| 2141013         | 11R24.5      | 14 Ply/G                  | 8.25                   | 6610                                                       | 6005                                                     | 105                                   | 43.3          | 10.9                     | 7.50                  | 18.0                      | 480 | 75                    | 130.1  | SmartWa  |
| 2141043         | 285/75R24.5  | 14 Ply/G                  | 8.25                   | 6175                                                       | 5675                                                     | 110                                   | 41.4          | 10.8                     | 7.50                  | 18.0                      | 502 | 75                    | 119.5  | SmartWar |

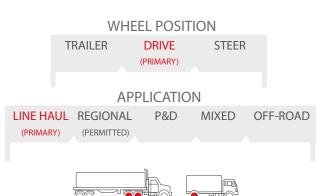
| 0 | $\breve{\textbf{H}}$ | <b>O</b>                       |   |
|---|----------------------|--------------------------------|---|
|   |                      | Max Load<br>(Ibs) @ Cold Infl. | ( |

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Pressure (psi)<br>Single | Pressui<br>Du |
|-----------------|--------------|---------------------------|------------------------|--------------------------|---------------|
| 2246203         | 295/75R22.5  | 14 Ply/G                  | 9.00                   | 6175                     | 56            |
| 2301843         | 295/75R22.5  | 16 Ply/G                  | 9.00                   | 7160                     | 66            |





800-HI-KUMHO




## KLD02(e)

The KLD02(e) is a long running, maximum mileage tire. Advancements in casing and tread technology place it at the top of the list for line-haul and regional drive applications.

### **BENEFITS & TECHNOLOGY**

- Outstanding traction and wear resistance are provided by the closed shoulder ribs with intermediate support blocks design
- Excellent wet and dry traction due to its 30/32" molded rib/lug pattern and aggressive center rib buttons
- Increased high-speed stability achieved through advanced casing profile, which improves overall contact pressure
- Enhanced retreadability comes from groove bottom protectors designed to prevent stone drilling and stone retention





SmartWay

# **KLD11(e)**

KLD11e is intended to give longer mileage and better durability for any road it travels on. This product will perform and give great traction in any weather conditions it is faced with.

### **BENEFITS & TECHNOLOGY**

- Provides more uniform wear and improves fuel economy.
- Enhanced block stiffness to improve mileage.
- Provides traction in all weather conditions.
- Minimizes tread block edge wear and prevents irregular wear.
- Designed for a longer tread life and lower rolling resistance.

|         | WHEEL POSITION |                       |     |         |      |      |    |       |  |  |
|---------|----------------|-----------------------|-----|---------|------|------|----|-------|--|--|
|         | TI             | RAILER                | _   | RIVE    | S    | TEER |    |       |  |  |
|         |                |                       | (PF | RIMARY) |      |      |    |       |  |  |
|         |                | А                     | PPL | ICATIC  | DN   |      |    |       |  |  |
| LINE HA |                | REGIONA<br>(PERMITTED |     | P&D     | MIXI | ED   | OF | F-ROA |  |  |
|         |                |                       |     | P       |      |      |    |       |  |  |
|         |                | 60                    |     |         |      |      |    |       |  |  |
|         |                |                       |     |         |      |      |    |       |  |  |
|         |                |                       |     |         |      |      |    |       |  |  |
|         |                |                       |     |         |      |      |    |       |  |  |

| 0 | $\mathbf{H}_{\overline{1}}$ | <b>O</b> | $\mathbf{O}$ | psi | <b>O</b> [ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | $\breve{H}_{\bar{1}}$ | <br>Ō | mph | bs |
|---|-----------------------------|----------|--------------|-----|------------------------------------------------|-----------------------|-------|-----|----|
|   |                             | MaxLoad  | Max Load     | Max |                                                |                       |       |     |    |

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | (Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | (lbs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Inflation<br>Pressure<br>(psi) | Diam.<br>(in) | Section<br>Width<br>(in) | Approved<br>Rim Width | Tread<br>Depth<br>(1/32") | RPM | Max<br>Speed<br>(mph) | Weight |          |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------|----------------------------------------------|--------------------------------|---------------|--------------------------|-----------------------|---------------------------|-----|-----------------------|--------|----------|
| 2106913         | 11R22.5      | 14 Ply/G                  | 8.25                   | 6175                                           | 5840                                         | 105                            | 42.1          | 10.9                     | 7.50                  | 30.0                      | 494 | 75                    | 129.0  |          |
| 2144903         | 295/75R22.5  | 14 Ply/G                  | 9.00                   | 6175                                           | 5675                                         | 110                            | 41.1          | 11.3                     | 8.25                  | 30.0                      | 506 | 75                    | 125.7  | SmartWay |
| 2301303         | 11R24.5      | 16 Ply/H                  | 8.25                   | 7160                                           | 6610                                         | 120                            | 42.1          | 10.9                     | 7.50                  | 30.0                      | 479 | 75                    | 138.0  |          |
| 2104753         | 285/75R24.5  | 14 Ply/G                  | 8.25                   | 6175                                           | 5675                                         | 110                            | 42.2          | 10.7                     | 7.50                  | 30.0                      | 492 | 75                    | 125.8  |          |

|  | 0 |  |
|--|---|--|
|  |   |  |

| ) | 五 |
|---|---|
|   |   |

|      | 0               |                           | Ă                      | <b>O</b>                                                   | <b>O</b>                                                 | psi                                   | <b>O</b> <u>]</u> | $\overline{}$            | Ħ                     | _]_                       | Ō   | mph                   | o<br>Ibs |          |
|------|-----------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------|--------------------------|-----------------------|---------------------------|-----|-----------------------|----------|----------|
| Prod |                 | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in)     | Section<br>Width<br>(in) | Approved<br>Rim Width | Tread<br>Depth<br>(1/32") | RPM | Max<br>Speed<br>(mph) | Weight   |          |
| 2301 | 283 11R22.5     | 16 Ply/H                  | 8.25                   | 6610                                                       | 6005                                                     | 120                                   | 41.7              | 10.8                     | 7.50                  | 26.0                      | 484 | 75                    | 123.5    | SmartWay |
| 2245 | 933 295/75R22.5 | 14 Ply/G                  | 9.00                   | 6175                                                       | 5675                                                     | 110                                   | 40.8              | 11.5                     | 8.25                  | 26.0                      | 490 | 75                    | 116.0    | SmartWay |
| 2301 | 293 11R24.5     | 16 Ply/H                  | 8.25                   | 7160                                                       | 6610                                                     | 120                                   | 43.5              | 10.9                     | 7.50                  | 26.0                      | 463 | 75                    | 131.5    | SmartWay |
| 2261 | 353 285/75R24.5 | 14 Ply/G                  | 8.25                   | 6175                                                       | 5675                                                     | 110                                   | 41.9              | 10.9                     | 7.50                  | 26.0                      | 495 | 75                    | 122.0    | SmartWay |

800-HI-KUMHC









\* \* \* \*

800-HI-KUMHO

## **KXD12(e)**

Engineered to achieve higher mileage and balanced wear, the KXD12(e) features a specialized compound for lower rolling resistance and inner zig-zag siping for confident all-season traction and control.

### **BENEFITS & TECHNOLOGY**

12 800-HI-KUMHO

- Application of 1,188 sipes for all-season driving capabilities
- Semi-block tread pattern design with balanced contact pressure provides even wear characteristics and enhanced traction
- Groove layout designed to prevent stone drilling
- Enhanced fuel efficiency and tread life due to the application of a low rolling resistance compound

WHEEL POSITION TRAILER DRIVE STEER (PRIMARY)

**APPLICATION** 

LINE HAUL REGIONAL P&D MIXED OFF-ROAD (PRIMARY) (PERMITTED)





SmartWay

# KLT12(e)

Designed primarily as an over-the-road trailer tire, the KLT12e delivers low rolling resistance, minimized shoulder wear and longer mileage.

### **BENEFITS & TECHNOLOGY**

- · Cut and chip resistant and balanced wear
- Wide and deep tread with balanced contact patch for high mileage
- Application of angled square grooves to prevent abnormal wear

|         |                 | WHE                | EL POSI  | TION                 |    |                     |
|---------|-----------------|--------------------|----------|----------------------|----|---------------------|
|         | TRAIL<br>(PRIMA |                    | DRIVE    | STEEF                | 2  |                     |
|         |                 | APF                | PLICATIO | DN                   |    |                     |
| LINE HA |                 | GIONAL<br>RMITTED) | P&D      | MIXED                | OF | F-ROAD              |
|         |                 |                    |          |                      |    |                     |
|         | 0               |                    | Ħ        | Max Lo<br>(lbs) @ Co |    | Max L<br>(lbs) @ Co |

13 800-ні-кимно

|                 | 0            |                           | Ħ                      | <b>O</b>                                                   | <b>O</b>                                                 | psi                                   | <b>O</b> <u>I</u> | $\overline{\frown}$      | Ħ                     | -J-  | Ō   | <u>source</u><br>mph  | o<br>Ibs |          |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------|--------------------------|-----------------------|------|-----|-----------------------|----------|----------|
| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in)     | Section<br>Width<br>(in) | Approved<br>Rim Width |      | RPM | Max<br>Speed<br>(mph) | Weight   |          |
| 2246223         | 11R22.5      | 14 Ply/G                  | 8.25                   | 6175                                                       | 5840                                                     | 105                                   | 40.8              | 10.9                     | 7.50                  | 13.5 | 509 | 75                    | 105.8    | SmartW   |
| 2176123         | 295/75R22.5  | 14 Ply/G                  | 8.25                   | 6175                                                       | 5675                                                     | 110                                   | 39.8              | 10.9                     | 7.50                  | 13.0 | 522 | 75                    | 107.2    | SmartWa  |
| 2253313         | 11R24.5      | 14 Ply/G                  | 8.25                   | 6610                                                       | 6005                                                     | 105                                   | 44.1              | 10.9                     | 7.50                  | 13.5 | 483 | 75                    | 113.2    | SmartWa  |
| 2246213         | 285/75R24.5  | 14 Ply/G                  | 8.25                   | 6175                                                       | 5675                                                     | 110                                   | 40.9              | 10.6                     | 7.50                  | 13.5 | 508 | 75                    | 104.9    | SmartWay |

| 0 |  | Ħ | Max Load |  | Max | 0 ] | Ē |  | Ō | mph | o<br>Ibs |
|---|--|---|----------|--|-----|-----|---|--|---|-----|----------|
|---|--|---|----------|--|-----|-----|---|--|---|-----|----------|

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | (lbs) @ Cold Infl.<br>Pressure (psi)<br>Single | (lbs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Inflation<br>Pressure<br>(psi) | Diam.<br>(in) | Section<br>Width<br>(in) | Approved<br>Rim Width |      | RPM | Max<br>Speed<br>(mph) | Weight |                      |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------|----------------------------------------------|--------------------------------|---------------|--------------------------|-----------------------|------|-----|-----------------------|--------|----------------------|
| 2283603         | 11R24.5      | 16 Ply/G                  | 8.25                   | 7160                                           | 6610                                         | 120                            | 43.6          | 10.8                     | 7.50                  | 25.5 | 463 | 75                    | 134.8  | SmartWay<br>VERIFIED |
| 2278553         | 11R22.5      | 16 Ply/G                  | 8.25                   | 6610                                           | 6005                                         | 120                            | 41.6          | 10.8                     | 7.50                  | 25.5 | 485 | 75                    | 126.6  | SmartWay<br>VERIFIED |
| 2278563         | 295/75R22.5  | 14 Ply/G                  | 9.00                   | 6175                                           | 5675                                         | 110                            | 40.6          | 11.2                     | 8.25                  | 24.2 | 497 | 75                    | 124.7  | SmartWay             |

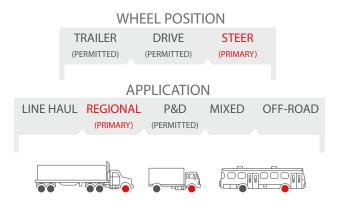











## KRS02(e)

## **KRS12(e)**

A premium regional steer tire, the KRS02(e) features Tread Centering Groove Technology (TCG) for improved performance and tread wear uniformity. This outstanding all-position use tire was designed and engineered to meet the demanding requirements of regional and pickup and delivery applications.

### **BENEFITS & TECHNOLOGY**

- Outstanding general purpose performance and all-position capable, featuring a non-decoupling groove and five-rib design
- Engineered and constructed for a long, original tread life with an improved 20/32 tread design
- Accurate toe-in setting provided by Tread Centering Groove Technology (TCG)
- Kumho SmartWay verified tires use special, low rolling resistance tread cap & base compounds to improve wear and fuel economy





### SmartWay

800-HI-KUMHO

#### **O** Ö 🖾 OI 🥽 🛱 🕂 Õ 🚟 📠 M Ο

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in) | Section<br>Width<br>(in) | Approved<br>Rim Width | Tread<br>Depth<br>(1/32") | RPM | Max<br>Speed<br>(mph) | Weight |       |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|---------------|--------------------------|-----------------------|---------------------------|-----|-----------------------|--------|-------|
| 2278673         | 7.5R16       | 14 Ply/G                  | 6.00                   | 3305                                                       | 3195                                                     | 105                                   | 31.7          | 8.1                      | 5.50                  | 14.0                      | 659 | 75                    | 57.1   |       |
| 1649613         | 10R22.5      | 14 Ply/G                  | 7.50                   | 5680                                                       | 5360                                                     | 115                                   | 40.2          | 9.9                      | 7.50                  | 18.0                      | 517 | 75                    | 106.5  |       |
| 1662513         | 285/75R24.5  | 14 Ply/G                  | 8.25                   | 6175                                                       | 5675                                                     | 110                                   | 41.6          | 10.6                     | 7.50                  | 20.0                      | 500 | 75                    | 121.1  |       |
| 2173423         | 12R22.5      | 16 Ply/H                  | 9.00                   | 7390                                                       | 6780                                                     | 120                                   | 42.8          | 11.5                     | 8.25                  | 20.0                      | 485 | 75                    | 135.0  |       |
| 2144923         | 295/75R22.5  | 14 Ply/G                  | 9.00                   | 6175                                                       | 5675                                                     | 110                                   | 40.4          | 10.9                     | 7.50                  | 20.0                      | 514 | 75                    | 116.0  | Sm Sm |
|                 |              |                           |                        |                                                            |                                                          |                                       |               |                          |                       |                           |     |                       |        |       |

#### The ideal steer tire for commercial trucks, the KRS12(e) is designed to perform in tough regional driving conditions with cut and chip resistance and enhanced durability features.

### **BENEFITS & TECHNOLOGY**

- Application of a zig-zag circumferential groove design for increased traction and braking performance
- Designed with a notched groove base to prevent cracking and stone drilling
- Optimized rib width ratio for event contact pressure distribution and enhanced shoulder block rigidity
- Designed with an anit-cut and chip resistant compound

|         |        | WHE           | EL POS              | ITION                |                                   |                   |
|---------|--------|---------------|---------------------|----------------------|-----------------------------------|-------------------|
|         | TRAILE |               | DRIVE               | STE<br>(PRIM         |                                   |                   |
|         |        | APP           | LICATI              | ON                   |                                   |                   |
| LINE HA |        | ONAL<br>MARY) | P&D<br>(PERMITTE    | MIXEI                | D OI                              | FF-R(             |
|         |        | <b>•</b>      |                     |                      |                                   |                   |
| O       |        | y Rating/     | Measurin<br>Pim Wid | (lbs) @<br>ng Pressu | : Load<br>Cold Infl.<br>ure (psi) | N<br>(Ibs)<br>Pre |

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Pressure (psi)<br>Single |  |
|-----------------|--------------|---------------------------|------------------------|--------------------------|--|
| 2245583         | 255/70R225   | 16 Ply/G                  | 7.50                   | 5510                     |  |
| 2245593         | 11R225       | 16 Ply/G                  | 8.25                   | 6610                     |  |
| 2278683         | 295/75R22.5  | 16 Ply/G                  | 9.00                   | 7160                     |  |
| 2283583         | 11R245       | 16 Ply/G                  | 8.25                   | 7160                     |  |

14 800-ні-кимно

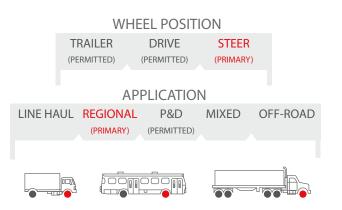








|                                                    | psi (                                 | <b>0</b> ]    |                          | Ë –                   |                           | Ō   | mph                   | 0<br>Ibs |                        |
|----------------------------------------------------|---------------------------------------|---------------|--------------------------|-----------------------|---------------------------|-----|-----------------------|----------|------------------------|
| Max Load<br>) @ Cold Infl.<br>essure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in) | Section<br>Width<br>(in) | Approved<br>Rim Width | Tread<br>Depth<br>(1/32") | RPM | Max<br>Speed<br>(mph) | Weight   |                        |
| 5070                                               | 120                                   | 36.5          | 9.6                      | 8.75                  | 18.9                      | 553 | 75                    | 123.5    | *SmartWay<br>VERIFIED  |
| 6005                                               | 120                                   | 41.3          | 10.9                     | 7.50                  | 19.5                      | 488 | 75                    | 134.8    | *SmartWay<br>VERIFIED  |
| 6610                                               | 120                                   | 40.4          | 11.0                     | 8.25                  | 19.5                      | 499 | 75                    | 93.7     | * SmartWay<br>Verified |
| 6610                                               | 120                                   | 43.4          | 10.9                     | 7.50                  | 19.5                      | 465 | 75                    | 128.8    | *SmartWay<br>VERIFIED  |


## KRS03

### **KRS50**

The KRS03 is the perfect choice for regional and pickup and delivery applications. This all-position rib tire was designed ideally for small and medium duty trucks using 19.5" and 22.5" tires.

### **BENEFITS & TECHNOLOGY**

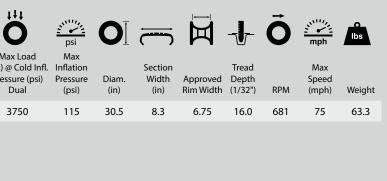
- Reduces progress of irregular wear due to lateral multi-sipes in the straight ribs
- Improved hydroplaning resistance and wet traction from S-shaped sipes in straight ribs
- Better traction and less stone holding is enhanced by variable geometry groove edges
- Excellent cost-per-mile, outstanding stability and confident handling, benefits of a wide, deep and efficient tread pattern





Designed for increased mileage performance and ultimate durability, the KRS50 is the ideal choice for regional pickup and delivery applications.

#### **BENEFITS & TECHNOLOGY**


- Stiff block construction for stable driving performance and increased mileage
- Increased durability achieved through an enhanced belt structure design.
- Ungraded compound and construction for enhanced mileage and cut/chip resistance.

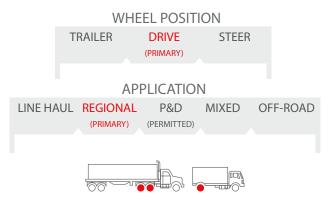
|         |       | WH        | EEL POSI    | TION      |       |    |
|---------|-------|-----------|-------------|-----------|-------|----|
|         | TRA   | ILER      | DRIVE       | STEER     |       |    |
|         | (PERM | ITTED)    | (PERMITTED) | (PRIMARY) |       |    |
|         |       | AF        | PLICATIO    | ON        |       |    |
| LINE H/ |       |           |             | MIXED     | OFF-R | OA |
|         |       | (PRIMARY) | (PERMITTED  | ))        |       |    |
|         |       | _         | _           |           |       |    |
|         |       |           |             |           |       |    |
| -       | -     | -         |             |           |       |    |

|      |                 | 0            |                           | $\mathbf{H}_{\bar{1}}$ | <b>O</b>                                                   | Ů                                                        |                                       | <b>O</b> <u>]</u>  | <u> </u>                 | Ħ                     | _]_       | Ō     | mph                   | o<br>Ibs |             |        |   |       | <u>س</u> م<br>م | R     |       | 0            |     |                        |            | $\mathbf{H}^{\mathrm{I}}$ |              | <b>O</b>                                        | Ļ         |
|------|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|--------------------|--------------------------|-----------------------|-----------|-------|-----------------------|----------|-------------|--------|---|-------|-----------------|-------|-------|--------------|-----|------------------------|------------|---------------------------|--------------|-------------------------------------------------|-----------|
|      | Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in)      | Section<br>Width<br>(in) | Approved<br>Rim Width |           | RPM   | Max<br>Speed<br>(mph) |          |             |        |   |       | Prod<br>Coc     |       |       | Tire<br>Size |     | Ply Rating<br>oad Rang |            | Aeasuring<br>Rim Width    | (lbs)<br>Pre | 1ax Load<br>@ Cold Inf<br>ssure (psi)<br>Single |           |
|      | 2129753         | 225/70R19.5  | 14 Ply/G                  | 6.75                   | 3970                                                       | 3750                                                     | 110                                   | 31.9               | 8.7                      | 7.50                  | 16.0      | 652   | 75                    | 66.0     |             |        |   |       | 2244            | 943   | 215/  | /75R17       | 7.5 | 14 Ply/G               |            | 6.00                      |              | 3970                                            | 3         |
|      | 1693213         | 245/70R19.5  | 14 Ply/G                  | 7.50                   | 4540                                                       | 4375                                                     | 110                                   | 33.4               | 9.5                      | 7.50                  | 17.0      | 622   | 75                    | 79.6     |             |        |   |       |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
|      | 1646013         | 275/70R22.5  | 16 Ply/H                  | 8.25                   | 6945                                                       | 6395                                                     | 125                                   | 38.0               | 10.8                     | 7.50                  | 20.0      | 547   | 75                    | 109.6    |             |        |   |       |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
|      | 1645913         | 315/80R22.5  | 20 Ply/L                  | 9.00                   | 9000                                                       | 8270                                                     | 130                                   | 42.4               | 12.1                     | 9.00                  | 20.0      | 490   | 75                    | 145.2    |             |        |   |       |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
|      |                 |              |                           |                        |                                                            |                                                          |                                       |                    |                          |                       |           |       |                       |          |             | e e    | ÷ |       |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
|      |                 |              |                           |                        |                                                            |                                                          |                                       |                    |                          |                       |           |       |                       |          |             | ь ф.   |   |       |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
|      |                 |              |                           |                        |                                                            |                                                          |                                       |                    |                          |                       |           |       |                       |          |             | ь÷.    | + | e III |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
| F.   |                 |              |                           |                        |                                                            |                                                          |                                       |                    |                          |                       |           |       |                       |          |             | e de l | + | •     |                 |       |       |              |     |                        |            |                           |              |                                                 |           |
| e 🕂  | +++             | ++++         | + $+$ $+$ $+$             | e + + e                |                                                            | e + + + i                                                | + + +                                 | ++                 | • • •                    | + +                   | + $+$ $+$ | • •   | • • •                 | ++       | +           | e de l | + | + +   | 4.4             | • •   | + +   | - +          | + + | + $+$                  | ۰.         | + +                       | + +          | ++                                              | + + -     |
| 16   | 800-HI-KUM      | + +          | + $+$ $+$ $+$             | b + b + b              |                                                            | b + b + b                                                | + + +                                 | +,+,               | e + e                    | + +                   | + $+$ $+$ | 6 ÷ 1 | e + i                 | ++       | $\Phi = 0$  | ь нь   | + | • •   | +1              | 6.4   | + $+$ | ÷.           | + + | + $+$                  | $\Phi_{i}$ | ++                        | * *          | ++                                              | + $+$ $+$ |
| 10   | 000-HI-KUW      | + +          | + $+$ $+$ $+$             | b + b + b              |                                                            | b + b + b                                                | + + +                                 | $\Phi_{1}\Phi_{2}$ | * * *                    | ++                    | +++       | 6 ÷.  | + + +                 | ++       | $\pm 1$     | Ь. eb. | + | ÷.+   | 4.4             | Ь. Ф. | * *   | 14           | * * | + $+$                  | $\Phi_{i}$ | ÷ + ;                     | * *          | ++                                              | * * *     |
| k de | + $+$ $+$       | ++++         | + $+$ $+$ $+$             | b + b + b              |                                                            | b + b + b                                                | + + +                                 | +,+,               | • • •                    | + +                   | + $+$ $+$ | ÷.+.  | 6 <del>6</del> 6      | ++       | $\Phi_{ij}$ | ь нь   | + | • •   | <b>4</b> 4      | e e   | * *   | 1            | * * | + $+$                  | $\Phi_{i}$ | * * .                     | * *          | ++                                              | * * *     |



AD




800-HI-KUMHO

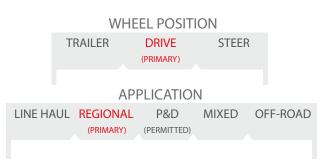
## KRD01

The KRD01 was specifically designed and engineered for maximum tread life and long performance in high scrub, fast wear applications. A great choice for regional and pickup and delivery use, the tire's wider and flatter tread arc produces improved and more uniform tread wear characteristics.

#### **BENEFITS & TECHNOLOGY**

- Improved durability and overall wear because of a new mold shape featuring a flatter tread radius
- Low running temps and long wear are achieved through improved compounding and an extra deep 28/32" tread pattern
- Even wear is optimized by a solid shoulder and center lug design
- Minimized stone holding and drilling, the benefits of engineered stone protectors






## KRD03

The KRD03 is a full 26/32" deep tread, open shoulder tire that was designed to provide excellent traction and high original tread mileage in faster wearing applications. Engineered with closepacked, high-density center elements for maximized grip, tread wear and durability.

#### **BENEFITS & TECHNOLOGY**

- Sturdy, wear-and-tear resistant tread block engineering
- · Long-term casing life and performance, benefits of high strength, flex and fatigue resistant ply wire construction
- · Exceptional casing stability and tread wear due to full, four belt design
- High net-to-gross block design with wide TAW





Ply Rating/

Load Range

16 Ply/H

16 Plv/H

区

Measuring

Rim Width

8.25

8.25

0

Max Load

Pressure (psi)

Single

6610

7390

Product

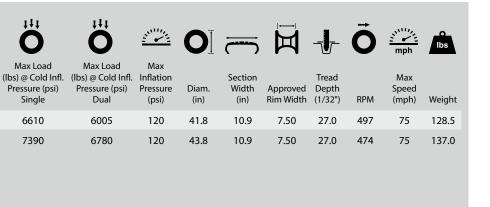
Code

1683213

1698813

\* \* \*

Tire


Size

11R22.5

11R24.5

|         |                 | Ο            |                           | $\mathbf{H}_{\bar{1}}$ | <b>O</b>                                                   | <b>O</b>                                                 | 200 M                                 | <b>O</b> <u>]</u> | <u> </u>                 | $\mathbf{H}_{\bar{1}}$ |                           | Ō            | <u>mph</u>            | o<br>Ibs |     |
|---------|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------|--------------------------|------------------------|---------------------------|--------------|-----------------------|----------|-----|
|         | Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in)     | Section<br>Width<br>(in) | Approved<br>Rim Width  | Tread<br>Depth<br>(1/32") | RPM          | Max<br>Speed<br>(mph) | Weight   |     |
|         | 1628113         | 11R22.5      | 16 Ply/H                  | 8.25                   | 6610                                                       | 6005                                                     | 120                                   | 41.9              | 10.9                     | 7.50                   | 28.0                      | 496          | 75                    | 129.9    |     |
|         | 1658013         | 295/75R22.5  | 14 Ply/G                  | 9.00                   | 6175                                                       | 5675                                                     | 110                                   | 40.9              | 11.0                     | 7.50                   | 28.0                      | 508          | 75                    | 119.4    |     |
|         | 1648113         | 11R24.5      | 16 Ply/H                  | 8.25                   | 7160                                                       | 6610                                                     | 120                                   | 43.9              | 10.9                     | 7.50                   | 28.0                      | 473          | 75                    | 138.4    |     |
|         | 1657913         | 285/75R24.5  | 14 Ply/G                  | 8.25                   | 6175                                                       | 5675                                                     | 110                                   | 42.1              | 10.6                     | 7.50                   | 28.0                      | 494          | 75                    | 124.4    |     |
| * * * * |                 |              |                           |                        |                                                            |                                                          |                                       |                   |                          |                        |                           |              |                       |          |     |
| ÷,      | ++++            | ++++         | * * * *                   | +++                    | * * * * *                                                  | + + + +                                                  | + + +                                 | ++                | + + +                    | ++                     | • • •                     | e e e        | 6 <del>4</del> 4      | ++       | ÷.4 |
| 1       | 8 800-ні-кил    | но           | * * * *                   | $+ + + \cdot$          | * * * * *                                                  | * * * *                                                  | * * *                                 | ++                | +++                      | ***                    | * * *                     | 6 <b>6</b> 6 | * * *                 | * * *    | † 1 |





\* \* \* \* \* \* \* \* 

## KRD23

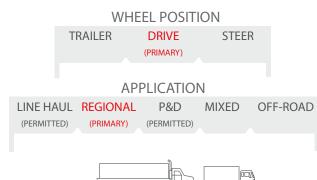
The ideal regional drive tire for commercial trucks, the KRD23 was designed to provide high mileage capabilities with even wear and durability to withstand regional driving conditions.

### **BENEFITS & TECHNOLOGY**

- The innovative later main groove design and application of shoulder tie-bars provide outstanding traction and high mileage
- Zig-zag center block arrangement creates even contact pressure distribution to facilitate even wear characteristics
- The woven longitudinal groove design and tie-bars minimize block movement to prevent heel and toe wear and stone drilling
- Application of anti-cutting TWI pins on the tread ribs • 0 provide flexibility to side forces as well a cut and chip resistance

WHEEL POSITION TRAILER DRIVE STEER (PRIMARY) **APPLICATION** LINE HAUL **REGIONAL** P&D MIXED OFF-ROAD (PERMITTED) (PERMITTED) (PERMITTED)






## **KRD16**

The KRD16 features a deep tread pattern for extended tread wear and excellent CPK. A heat-resistant compound reduces uneven wear and extends casing life. This tire is suited to heavy load applications.

#### **BENEFITS & TECHNOLOGY**

- Deep and wide tread design to provide outstanding performance and extended tread life
- Maximum wear and grip with open shoulder
- Multi-pitch tread pattern for low noise



|                 | 0            |                           | $\mathbf{H}^{\mathrm{I}}$ | Ů                                                          |                        |
|-----------------|--------------|---------------------------|---------------------------|------------------------------------------------------------|------------------------|
| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width    | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Ma<br>(Ibs) @<br>Press |
| 2262193         | 225/70R19.5  | 14 Ply/G                  | 6.75                      | 3970                                                       | 3                      |
|                 |              |                           |                           |                                                            |                        |

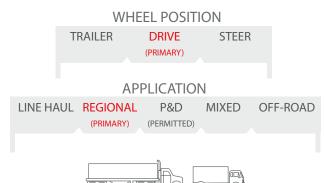
|     |       |                | <u> </u>      | R      | (        | C          |       |                    | )           | Ĭ        | 1           |              |                                   |                   |       | <b>O</b>                              | )                | <u>2110</u>                      | <u>24</u>  | 0            | <b>5</b> [ |                         |      | Ц           | _                      | - ( | Ō            | <u></u> m | ph               | o<br>Ibs |      |               |                     |                    |      |        | R            |     | (          | )          |      |         | )  | $\breve{\Xi}$     | 1    |                  | <sup>11</sup> C                          |              | ţ                          |
|-----|-------|----------------|---------------|--------|----------|------------|-------|--------------------|-------------|----------|-------------|--------------|-----------------------------------|-------------------|-------|---------------------------------------|------------------|----------------------------------|------------|--------------|------------|-------------------------|------|-------------|------------------------|-----|--------------|-----------|------------------|----------|------|---------------|---------------------|--------------------|------|--------|--------------|-----|------------|------------|------|---------|----|-------------------|------|------------------|------------------------------------------|--------------|----------------------------|
|     |       |                | Produ<br>Code |        |          | ire<br>ize |       |                    | ng/<br>inge |          |             | (lbs)<br>Pre | Max Lo<br>@ Co<br>essure<br>Singl | ld Infl.<br>(psi) | (lbs) | Aax Loa<br>@ Colo<br>essure (<br>Dual | d Infl.<br>(psi) | Max<br>Inflati<br>Pressu<br>(psi | on<br>ure  | Diam<br>(in) |            | ection<br>Width<br>(in) | Арр  |             | Tread<br>Dept<br>(1/32 | h   | RPM          | Spe       | ax<br>eed<br>ph) | Weigł    | ht   |               |                     |                    |      |        | oduct<br>ode |     |            | ire<br>ize |      |         |    | Measur<br>Rim Wie | ring | (Ibs) @<br>Press | x Load<br>Cold Ini<br>ure (psi)<br>ingle |              | Max<br>os)@<br>Pressu<br>D |
|     |       |                | 22439         | 43     | 11F      | 22.5       |       | 16 Ply             | /H          | 8.2      | 5           |              | 6610                              | D                 |       | 6005                                  |                  | 120                              | )          | 42.1         |            | 10.9                    | 7    | .50         | 28.0                   | )   | 479          | 7         | 5                | 132.     | 6    |               |                     |                    |      | 220    | 52193        | 2   | 25/7       | 0R19.      | 5    | 14 Ply/ | /G | 6.75              | 5    | 3                | 970                                      |              | 37                         |
|     |       |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      |               |                     |                    |      |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
|     |       |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      |               |                     |                    |      |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
|     |       |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      |               |                     |                    |      |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
|     | ÷ +   |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      | 1.            | 2                   | ÷ -                |      |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
|     | ÷÷.   |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      |               |                     | ÷.                 |      |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
|     | ÷ +   |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      |               |                     | $\Phi \rightarrow$ |      |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
| e e | e e   |                |               |        |          |            |       |                    |             |          |             |              |                                   |                   |       |                                       |                  |                                  |            |              |            |                         |      |             |                        |     |              |           |                  |          |      | +             | $\Phi_{i}$          | $\Phi_{\rm e}$     | ŧ.   |        |              |     |            |            |      |         |    |                   |      |                  |                                          |              |                            |
| e e | 6 (F) | $\Phi_{\rm c}$ | + +           |        | 6 (F)    | +1         | Ь. H. | +                  | + +         | . 41     | +           | 6.4          | -                                 | +                 | • •   | - 44                                  | +                | e e                              | $\Phi_{i}$ | ÷ 4          | - 41       | +                       | k de | +           | • •                    | +   | $\pm 4$      | e e       |                  | +1       | k d  | ÷.            | $\Phi_{i}$          | $\Phi_{ij}$        | • •  |        | + +          | 1   | +          | + +        | ÷.   | + +     | 1  | + $+$             | 1    | +                | h dha                                    | <b>4</b> . 4 | E I                        |
| 6 d | • 2   | 20             | 900 LI        | -KUMH  | <u> </u> | +1         | ь н   | $\Phi \rightarrow$ | • •         | $ \Phi $ | $\Phi_{ij}$ | 6.4          | +                                 | $\Phi_{ij}$       | 6.4   | - 44 J                                | $\Phi_{ij}$      | b de                             | $\Phi_{i}$ | ÷ 4          | 4          | + -                     | e e  | +           | • •                    | +   | $\Phi = 0$   | e e       | +                | +1       | k d  | $\rightarrow$ | $\Phi_{i}$          | +                  | • •  | ÷.     | ÷.+          | . • | $\Phi_{i}$ | + +        | . 41 | + $+$   |    | + $+$             | +    | +                | h dha                                    | ÷.4          | E H                        |
| e e | + í   | .0             |               |        | 0        | + 1        | ь н   | +                  | • •         | -4c      | +           | 6.4          | +                                 | +                 | • •   | - 44 J                                | +                | b de                             | $\Phi_{i}$ | + +          | - († 1     | +                       | b de | +           | ÷+                     | +   | (+, +)       | 6. (F     | 4                | + 1      | k d  | (+)           | $\mathbf{\Phi}_{i}$ | +                  | ÷. + | - H- 1 | ÷.+          |     | $\Phi_{i}$ | * *        | 4    | * *     |    | + $+$             | +    | $\Phi_{12}$      | b de s                                   | ÷ 1          | E H                        |
| e e | 6 (f) | $\Phi_{i}$     | ÷.+           | - 10-1 | 6.4      | $\pm 1$    | k de  | $\Phi_{\rm e}$     | • •         | +        | $\Phi_{ij}$ | 6.4          |                                   | $\Phi_{ij}$       | 6.4   | ÷40                                   | $\Phi_{ij}$      | e e                              | $\Phi_{i}$ | 4 A          |            | $\Phi_{ij}$             | e e  | $\Phi_{ij}$ | 6.4                    | +   | <b>4</b> . 4 | 6.4       | . 41             | $\pm 1$  | 6. A | ÷.            | $\Phi_{i}$          | +                  | • •  | 1      | ÷.+          | 1   | $\Phi_{i}$ | * *        | ÷.   | * *     | 1  | * *               | 1    | ÷.,              | h dha                                    | <b>+</b> 1   | h d                        |





## **KRD50**

With an all new tread design, the KRD50 has improved cut & chip resistance along with excellent forward traction on both highway and off-road surfaces. The innovative compound is formulated to maximize tread wear performance.


#### **BENEFITS & TECHNOLOGY**

e + e6.4.4 b + b

6 (F)

b + b

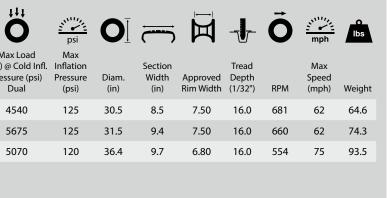
- · Cut and chip resistant and balanced wear
- Wide and deep tread with balanced contact patch for high mileage
- Application of angled square grooves to prevent abnormal wear





## KRT03a

has even wear and casing durability for retreading.


#### **BENEFITS & TECHNOLOGY**

- Deep and wide tread design enhances mileage and provides even wear
- clearing of debris
- load distribution





|    | Produ     | ct      | C       |              | Ply Rat<br>Load Ra        |     |        | uring | Ma<br>(Ibs) @<br>Press | x Load<br>Cold In<br>Sure (psi)<br>ingle | fl. (lb     | Max Lc<br>Max Lc<br>s) @ Co<br>ressure<br>Dua | oad<br>old Infl.<br>e (psi) | Ma  | ax<br>tion<br>sure | Diam.<br>(in) | Se<br>V    | ection     | Approv  | ved I | Tread<br>Depth | Ċ    | 2           | mph<br>Max<br>Speed<br>(mph) |    |       |            |                |                  |      | Pro   | duct |    | Tin<br>Siz  |        |           | y Rating<br>ad Rang |    | Measurin<br>Rim Widt | g  | Max L<br>bs) @ C<br>Pressur<br>Sing | oad<br>old Infl.<br>e (psi) | Ma<br>. (Ibs) @<br>Press | @( |
|----|-----------|---------|---------|--------------|---------------------------|-----|--------|-------|------------------------|------------------------------------------|-------------|-----------------------------------------------|-----------------------------|-----|--------------------|---------------|------------|------------|---------|-------|----------------|------|-------------|------------------------------|----|-------|------------|----------------|------------------|------|-------|------|----|-------------|--------|-----------|---------------------|----|----------------------|----|-------------------------------------|-----------------------------|--------------------------|----|
|    | 21414     | 83      | 245/70F | 19.5         | 16 Ply                    | //H | 7.5    | 50    | 5                      | 070                                      |             | 485                                           | 0                           | 12  | 20                 | 33.6          |            | 10.2       | 7.50    | )     | 19.0           | 595  | 5           | 75                           | 88 | 3.5   |            |                |                  |      | 214   | 6833 | 2  | 15/75       | 5R17.5 | 1         | 6 Ply/H             | I  | 6.00                 |    | 480                                 | )5                          | 4                        | 45 |
|    |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       |            |                |                  |      | 215   | 2753 | 2  | 35/75       | 5R17.5 | ; 1       | 8 Ply/J             |    | 6.75                 |    | 600                                 | )5                          | 5                        | 56 |
|    |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       |            |                |                  |      | 228   | 1003 | 2  | 55/70       | DR22.5 | 1         | 6 Ply/H             | I  | 7.50                 |    | 551                                 | 0                           | 5                        | 50 |
|    |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       |            |                |                  |      |       |      |    |             |        |           |                     |    |                      |    |                                     |                             |                          |    |
| +  |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       | <u>ا</u> ب | +              | ÷.               | e II |       |      |    |             |        |           |                     |    |                      |    |                                     |                             |                          |    |
| +  |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       |            | +              |                  |      |       |      |    |             |        |           |                     |    |                      |    |                                     |                             |                          |    |
| +  |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       | +          | $\Phi_{\rm c}$ | $\Phi_{\rm eff}$ | ŧ II |       |      |    |             |        |           |                     |    |                      |    |                                     |                             |                          |    |
| +  |           |         |         |              |                           |     |        |       |                        |                                          |             |                                               |                             |     |                    |               |            |            |         |       |                |      |             |                              |    |       | +          | $\Phi_{i}$     | $\Phi_{ij}$      | ۰I   |       |      |    |             |        |           |                     |    |                      |    |                                     |                             |                          |    |
| ÷. | + $+$ $+$ | e de la | 6.4.4   | e de l       | ÷ + .                     | + + | - 10   | + $+$ | ÷ +                    | + +                                      | +           | • •                                           | +                           | • • | 4                  | + $+$         | +          | <b>+</b> + | +1      | e de  | a de la d      | e de | +           | + +                          | ÷  | + $+$ |            | $\Phi_{i}$     | $\Phi_{ij}$      | • •  | - 10- | • •  | +  | +           | 6 (f)  | +         | н н.,               | ۰. | + +                  | ۰. | ÷.+.                                | + 1                         | • •                      | ŧ  |
| 2  | 2 800-ні  |         | -       | e de l       | $\bullet \bullet \bullet$ | ÷.+ | - 44 J | + $+$ | - 44 - 1               | + $+$                                    | +           | $\bullet$ $\bullet$                           | +                           | • • | $  \phi \rangle$   | + $+$         | $\Phi_{i}$ | + $+$      | $\pm 4$ | e de  | 4.4            | e de | $\Phi_{ij}$ | ÷.+                          | +  | + $+$ | (+)        | $\Phi_{i}$     | +                | • •  |       | • •  | +  | $\Phi_{ij}$ | 6 (f)  | $+ \cdot$ | Ь. Ф.,              | ۰. | ÷.+.                 | ۰. | ÷.+.                                | +1                          | e 🕂 1                    | ŧ  |
| Z  | ∠ 000-HI  | -KUMH(  |         | 6 <b>4</b> 5 | ÷.+.;                     | + + | - 44 J | + +   | - 4° -                 | ÷.+.                                     | +           | ÷.+.                                          | +                           | • • | ÷.                 | + +           | +          | + +        | $\pm 4$ | e de  | + +            | e e  | $\Phi_{ij}$ | • •                          | +  | + $+$ |            | $\mathbf{+}$   | <b>+</b> -       | • •  | 1     | ÷.+  | +  | +           | ÷.+.   | +         | Ь. Ф.,              | ۰. | ÷.+.                 | ۰. | ÷.+.                                | <b>+</b> 4                  | - <b>- -</b>             | t  |
| +  | + $+$ $+$ | 19.1    | 6.4.3   | e de l       | ÷. + .                    | ÷.+ | - 44 J | * *   | ÷.                     | ÷.+.                                     | $\Phi_{ij}$ | • •                                           | $\Phi_{ij}$                 | • • | ÷40                | ÷.+           | $\Phi_{i}$ | + +        | +1      | e de  | - H- H         | h dh | $\Phi_{ij}$ | ÷.+                          | +  | + $+$ |            | $\Phi_{i}$     | $\Phi_{ij}$      | • •  | 1     | ÷.+  | ۰. | $\Phi_{ij}$ | 6 (f)  | +         | ь÷.,                | ۰. | ÷ +,                 | ۰. | ÷.+.                                | * 1                         | - <b>- -</b> -           | t  |



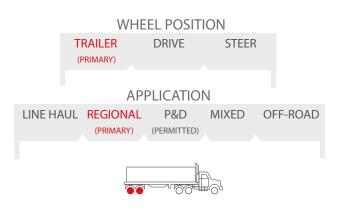
\* \* \* \* \* \* \* \* \* \*

\* \* \* \* \* \* \* \* \* \* \*

800-HI-KUMHO

## **KRT12**

This product is an improved high-capacity trailer tire. The KRT12 is intended for high load service in both regional and P&D applications.


### **BENEFITS & TECHNOLOGY**

+ + + + +

800-HI-KUMHO

24

- Optimized flatter tread radius to enhance mileage and provide even contact pressure to avoid irregular wear
- Wide 3x5 rib style tread pattern with increased shoulder rigidity
- Designed to withstand high-scrub conditions





## **KMA01**

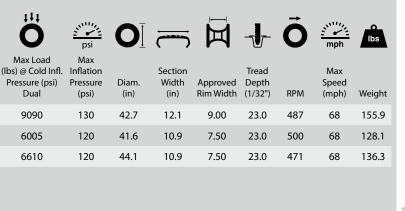
The KMA01 is a purpose-built on/off road tire that provides excellent cut and chip resistant as well as exceptional overall wear characteristics. With a sturdy four-rib design, the primary wheel positions for the KMA01 are steer and trailer.

### **BENEFITS & TECHNOLOGY**

- Driving stability and increased removal mileage are provided by superior bead strength and tire uniformity
- · Enhanced casing integrity and uniformity are the results of an advanced belt package, providing higher retread quality
- Excellent removal mileage, the benefit of a durable, cut and chip resistant compound molded into a closed shoulder and block pattern
- Enhanced retreadability comes from groove bottom protectors designed to prevent stone drilling and stone retention

|         | WH          | IEEL POSIT  | ION       |           |
|---------|-------------|-------------|-----------|-----------|
|         | TRAILER     | DRIVE       | STEER     | 1         |
|         | (PERMITTED) | (PERMITTED) | (PRIMARY  | ()        |
|         |             |             |           |           |
|         | A           | PPLICATIO   | N         |           |
| LINE H/ | AUL REGIONA | l P&D       | MIXED     | OFF-ROA   |
|         | (PERMITTED) | (PERMITTED) | (PRIMARY) | (PERMITTE |
|         |             |             | 4         |           |




|                 | 0            |                           | Ħ                      | <b>O</b>                                                   |   |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|---|
| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | ( |
| 1804813         | 315/80R22.5  | 20 Ply/L                  | 9.00                   | 10200                                                      |   |
| 1825913         | 11R22.5      | 16 Ply/H                  | 8.25                   | 6610                                                       |   |
| 1826013         | 11R24.5      | 16 Ply/H                  | 8.25                   | 7160                                                       |   |

\* \* \* \* \* \* \* \*

|    |                 | Ο            |                           | $\breve{\Xi}$          | <b>O</b>                                                   | <b>O</b>                                                 | psi                                   | <b>O</b> <u>]</u> |                          | ы<br>Ы                |      | Ō   | mph                   | o<br>Ibs |
|----|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------|--------------------------|-----------------------|------|-----|-----------------------|----------|
|    | Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in)     | Section<br>Width<br>(in) | Approved<br>Rim Width |      | RPM | Max<br>Speed<br>(mph) | Weight   |
|    | 2210203         | 11R22.5      | 14 Ply/G                  | 8.25                   | 6175                                                       | 5840                                                     | 105                                   | 40.9              | 10.9                     | 7.50                  | 17.0 | 508 | 75                    | 110.3    |
|    | 2219263         | 295/75R22.5  | 14 Ply/G                  | 9.00                   | 6175                                                       | 5675                                                     | 110                                   | 40.0              | 10.9                     | 7.50                  | 16.0 | 520 | 75                    | 107.3    |
|    | 2210233         | 11R24.5      | 14 Ply/G                  | 8.25                   | 6610                                                       | 6005                                                     | 105                                   | 43.0              | 10.9                     | 7.50                  | 17.0 | 483 | 75                    | 118.0    |
|    |                 |              |                           |                        |                                                            |                                                          |                                       |                   |                          |                       |      |     |                       |          |
|    |                 |              |                           |                        |                                                            |                                                          |                                       |                   |                          |                       |      |     |                       |          |
| 11 |                 |              |                           |                        |                                                            |                                                          |                                       |                   |                          |                       |      |     |                       |          |
|    |                 |              |                           |                        |                                                            |                                                          |                                       |                   |                          |                       |      |     |                       |          |



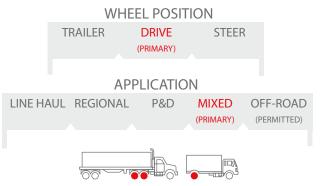




\* \* \* \* \*

## **KMD41**

The KMD41 was designed using Kumho Tire's ICOS(Integrated Component Optimization System). This proprietary technology optimizes tire casing shape, which redirects stress in critical areas. The result is maximum durability in a true mixed-service tire that delivers long tread life at highway speeds.


#### **BENEFITS & TECHNOLOGY**

\* \* \* \* \*

800-HI-KUMHO

26

- Engineered for mixed service, non-speed restricted highway use - max 68 mph
- Maximum traction and tread wear performance from the aggressive 31/32" multi-lug design
- Long, even wear in the drive axle position due to its optimized tread radius
- Outstanding resistance to cutting and chipping, benefits of a new compound technology
- Enhanced retreadability comes from groove bottom protectors designed to prevent stone drilling and stone retention





### **KRA12**

The KRA12 is available in wide-base sizes and features an aggressive 6-rib tread pattern with large, full depth tread sipes. This tire will deliver increased mileage, endurance, and better traction versus other regional truck tires.

### **BENEFITS & TECHNOLOGY**

- Robust under tread to resist cutting and stone damage
- Improved durability and resistance to uneven wear
- Six-rib design to provide excellent tread wear and traction

|         |     | WHE       | EL POSIT    | ION         |          |
|---------|-----|-----------|-------------|-------------|----------|
|         | TF  | RAILER    | DRIVE       | STEER       |          |
|         | (PE | RMITTED)  | (PERMITTED) | (PRIMARY)   |          |
|         |     |           |             |             |          |
|         |     | AP        | PLICATIO    | N           |          |
| LINE HA | AUL | REGIONAL  | P&D         | MIXED       | OFF-ROAD |
|         |     | (PRIMARY) | (PERMITTED) | (PERMITTED) |          |
|         |     |           |             |             |          |
|         | M   |           |             |             | _        |



|            |            |       |            |                 |       | _  |    |              |    |    |     |              |      |   |               |       |   |    |              |   |   |                      |           |     |        |                      |      |
|------------|------------|-------|------------|-----------------|-------|----|----|--------------|----|----|-----|--------------|------|---|---------------|-------|---|----|--------------|---|---|----------------------|-----------|-----|--------|----------------------|------|
|            |            |       |            |                 |       |    | I  |              |    |    |     | 0            |      |   |               | 0     |   | Ţ  | Ţ            |   |   |                      | )<br>.oad | - 0 |        |                      | oad  |
| ight       |            |       |            |                 |       |    |    | rodu<br>Code |    |    |     | Tire<br>Size |      |   | Ply R<br>Load |       |   |    | surir<br>Wid |   |   | @ Co<br>ssur<br>Sing | e (ps     |     |        | @ Co<br>ssure<br>Dua | e (p |
| 0.9        |            |       |            |                 |       |    | 22 | 185          | 13 | 3  | 85/ | 65R2         | 22.5 |   | 18            | Ply/. | J | 1  | 1.75         |   |   | 937                  | 70        |     |        | -                    |      |
| 9.5        |            |       |            |                 |       |    | 22 | 185          | 03 | 4  | 25/ | 65R2         | 22.5 |   | 20            | Ply/l | - | 1: | 2.25         |   |   | 113                  | 55        |     |        | -                    |      |
|            |            | + + + | * * *      | * * *           | + + + |    |    |              |    |    |     |              |      |   |               |       |   |    |              |   |   |                      |           |     |        |                      |      |
|            |            | ÷     | ÷          | ÷               | ÷.    |    |    |              |    |    |     |              |      |   |               |       |   |    |              |   |   |                      |           |     |        |                      |      |
| ÷          | ÷          | ÷     | $\Phi_{i}$ | $\mathbf{\Phi}$ | ÷     | ÷  | ٠  | ÷            | ٠  | ٠  | ٠   | ٠            | ٠    | ٠ | ٠             | ٠     | ٠ | ٠  | ٠            | ٠ | ٠ | ٠                    | ٠         | ٠   | ٠      | ٠                    | ł    |
| +          | $\Phi_{i}$ | ÷     | $\Phi_{i}$ | +               | ÷     | ÷  | ÷  | ÷            | ÷  | ÷  | ÷   | ÷            | ÷    | ÷ | $^{+}$        | ÷     | ÷ | ÷  | ÷            | ÷ | ÷ | ÷                    | ÷         | ÷   | $\Phi$ | $\Phi_{i}$           | ÷    |
| $\Phi_{i}$ | ÷          | ÷     | $\Phi_{i}$ | $^{+}$          | ÷,    | ÷, | ÷  | ÷            | ÷  | ÷, | ÷   | ÷            | ÷,   | ÷ | $^{+}$        | ÷,    | ÷ | ÷  | ÷            | ÷ | ÷ | ÷,                   | ÷         | ÷   | $^{+}$ | Ф.                   | ÷    |
|            |            |       |            |                 |       |    |    |              |    |    |     |              |      |   |               |       |   |    |              |   |   |                      |           |     |        |                      |      |

#### Ο Ο $\square$ MaxLoad Max Load Max (lbs) @ Cold Infl. (lbs) @ Cold Infl. Inflation Max Section Tread Diam. Width Approved Depth Speed Product Tire Ply Rating/ Measuring Pressure (psi) Pressure (psi) Pressure Load Range Rim Width (1/32") RPM Code Size **Rim Width** Dual (in) We Single (psi) (in) (mph) 2147103 11R22.5 6610 6005 42.0 10.9 7.50 30.0 495 68 16 Ply/H 8.25 120 130 2147123 11R24.5 16 Plv/H 8.25 7160 6610 120 44.1 10.9 7.50 30.0 471 68 130







\* \* \* \* \* \* \* \* \* \* 800-HI-KUMHO

### **KMA12**

The KMA12 is resistant to stone retention and drilling with an application of dual tie-bars and balanced footprint to provide durability and longer tread life. With an improved block design comes enhanced braking and traction performance.

### **BENEFITS & TECHNOLOGY**

- Tread compound formulated to resist cutting and chipping
- Wide and reinforced chafer minimizes deformation of the bead area
- Application of 'zig-zag' groove design for excellent 'stop and go' performance



|         |          |         | DRIVE      | STEE<br>(PRIMA |    |           |
|---------|----------|---------|------------|----------------|----|-----------|
|         | (, 2,    |         | ,          |                | ,  |           |
|         |          | APPI    | LICATIO    | N              |    |           |
| LINE HA | UL REGIO | DNAL    | P&D        | MIXED          | OF | F-ROAD    |
|         | (PERMI   | TTED) ( | PERMITTED) | (PRIMARY)      | (P | ERMITTED) |
|         |          |         |            | a              |    |           |

WHEEL POSITION



### $\blacksquare \bigcirc \bigcirc \bigcirc \blacksquare \lor \lor \lor \lor \bigcirc \boxdot \bigcirc \boxdot \bigcirc \boxdot \bigcirc \boxdot \bigcirc \boxdot \bigcirc \boxdot \blacksquare \blacksquare \blacksquare \blacksquare$

| Product<br>Code | Tire<br>Size | Ply Rating/<br>Load Range | Measuring<br>Rim Width | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Single | Max Load<br>(Ibs) @ Cold Infl.<br>Pressure (psi)<br>Dual | Max<br>Inflation<br>Pressure<br>(psi) | Diam.<br>(in) | Section<br>Width<br>(in) | Approved<br>Rim Width |      | RPM | Max<br>Speed<br>(mph) | Weight |
|-----------------|--------------|---------------------------|------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|---------------|--------------------------|-----------------------|------|-----|-----------------------|--------|
| 2116463         | 385/65R22.5  | 20 Ply/L                  | 11.75                  | 9920                                                       | -                                                        | 130                                   | 42.4          | 15.0                     | 12.30                 | 23.0 | 493 | 68                    | 176.7  |
| 2259163         | 425/65R22.5  | 20 Ply/L                  | 12.25                  | 11400                                                      | -                                                        | 120                                   | 44.6          | 16.2                     | 13.00                 | 24.0 | 469 | 68                    | 187.4  |
| 2278783         | 445/65R22.5  | 20 Ply/L                  | 13.00                  | 12300                                                      | -                                                        | 120                                   | 45.8          | 17.4                     | 14.00                 | 23.0 | 456 | 68                    | 205.5  |

| ŧ. | ÷          | $\left\  \cdot \right\ $ |    |              |          |              |            |                     |            |            |            |            |            |                     |            |            |            |            |            |            |            |            |                     |                     |            |            |                  |            |            |            |            |    |                  |            |            |            |            |            |                     |            |             | +           |
|----|------------|--------------------------|----|--------------|----------|--------------|------------|---------------------|------------|------------|------------|------------|------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|---------------------|------------|------------|------------------|------------|------------|------------|------------|----|------------------|------------|------------|------------|------------|------------|---------------------|------------|-------------|-------------|
| ŧ. | ÷.         | $\mathbf{t}$             |    |              |          |              |            |                     |            |            |            |            |            |                     |            |            |            |            |            |            |            |            |                     |                     |            |            |                  |            |            |            |            |    |                  |            |            |            |            |            |                     |            |             | +           |
| ŧ. | $\Phi_{i}$ | $\mathbf{t}$             |    |              |          |              |            |                     |            |            |            |            |            |                     |            |            |            |            |            |            |            |            |                     |                     |            |            |                  |            |            |            |            |    |                  |            |            |            |            |            |                     |            |             | $\Phi_{ij}$ |
| ŧ. | ÷.         | $\mathbf{t}$             |    |              |          |              |            |                     |            |            |            |            |            |                     |            |            |            |            |            |            |            |            |                     |                     |            |            |                  |            |            |            |            |    |                  |            |            |            |            |            |                     |            |             | ÷.          |
| ŧ. | ÷,         | $\Phi_{i}$               | ÷, | + + + +      | $^{\pm}$ | $\mathbf{+}$ | $\Phi_{i}$ | $\mathbf{\Phi}_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | ÷,         | $\Phi_{i}$ | ÷,                  | ÷,         | ÷,         | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | ÷,         | $\Phi_{i}$ | $\Phi_{i}$ | $\mathbf{\Phi}_{i}$ | $\mathbf{\Phi}_{i}$ | ÷,         | $\Phi_{i}$ | ÷,               | $\Phi_{i}$ | ÷,         | ÷,         | ÷,         | ŧ. | ÷,               | ÷,         | ÷,         | ÷,         | ÷,         | $\Phi_{i}$ | $\mathbf{\Phi}_{i}$ | $\Phi_{i}$ | ÷.          | ÷.          |
| ŧ. |            | 28                       | 2  | 800-HI-KUMHO |          | $\Phi_{i}$   | $\Phi_{i}$ | $\Phi_{i}$          | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\mathbf{\Phi}_{i}$ | $\Phi_{i}$          | $\Phi_{i}$          | $\Phi_{i}$ | $\Phi_{i}$ | $\mathbf{t}_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | ŧ. | $\mathbf{t}_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$          | $\Phi_{i}$ | $\Phi_{ij}$ | ÷.          |
| ŧ. | ÷.         | 20                       | 5  |              |          | $\Phi_{i}$   | $\Phi_{i}$ | $\Phi_{i}$          | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$          | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$          | $\Phi_{i}$          | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$       | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | ÷.         | ÷. | $\Phi_{i}$       | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$          | $\Phi_{i}$ | ۰.          | $\Phi_{ij}$ |
| ŧ. | ÷,         | ÷,                       | ÷, | ++++         | $^{+}$   | ÷            | ÷          | ÷,                  | ÷,         | ÷,         | $\Phi_{i}$ | ÷,         | ÷,         | ÷.                  | ÷,         | ÷,         | $\Phi_{i}$ | ÷,         | ÷,         | ÷,         | ÷,         | ÷,         | ÷,                  | ÷,                  | ÷,         | ÷,         | ÷,               | ÷,         | ÷,         | ÷.         | ÷,         | ÷, | ÷,               | ÷,         | ÷,         | ÷,         | ÷,         | ÷,         | ÷,                  | ÷,         | ÷,          | ÷           |



### WARRANTY POLICIES

CONSUMER LIMITED WARRANTY FOR KUMHO & MARSHAL BRAND MEDIUM COMMERCIAL TRUCK TIRES

#### I. WHAT IS WARRANTED AND WHO IS ELIGIBLE UNDER THIS WARRANTY

Kumho Tire U.S.A. Inc., 133 Peachtree St NE, Suite 2800, Atlanta, GA 30303, warrants to the original consumer purchaser that all KUMHO replacement radial tires either directly or through an authorized KUMHO dealer, and which are mounted on vehicles within the U.S.A., and becomes unserviceable for any reason within the manufacturers control, such tire will be replaced with an equivalent KUMHO tire OR one that Kumho approves. This warranty only applies if the following requirements are met:

- The tire is size, load rating, and speed rating that the vehicle manufacturer states.
- The tire has not become unserviceable due to any condition listed under WHAT IS NOT COVERED BY THE WARRANTY.

#### WHAT IS COVERED BY THE WARRANTY AND HOW LONG:

The life of the original usable tread has worn down to 2/32" remaining (worn down to the built-in indicators in the tread grooves) before 5 years (6 years for KLS02e, KLD11e, KLD02 (e), KLD01e and KLT12e patterns) from the date of manufacture or purchase date for commercial truck tires (whichever comes first), any new tire manufactured by Kumho Tire Co., Inc. covered by this warranty becomes unserviceable due to a material or workmanship condition, KUMHO will do either of the following:

- A. During the first 2/32" of the original usable tread, Kumho will replace such tire with a comparable new KUMHO or Marshal tire free of charge. Applicable taxes on the new tire, and costs of mounting and balancing and any other service charges are required to be paid by the owner.
- B. After the first 2/32" of the original usable tread, a credit percentage will be given toward the purchase price of a comparable new Kumho or Marshal tire effective at the time of adjustment. Applicable taxes on the new tire and costs of mounting and balancing service are required to be paid by the owner.

To obtain the credit percentage, please refer to the Adjustment Credit Percentage Table on page 43 or utilize the following example:

R.T.D.: Remaining Tread Depth O.T.D.: Original Tread Depth

If R.T.D. = 10 and O.T.D = 20, the calculation is (10-2: remaining useable tread depth) ÷ (20-2: original useable tread depth) = 44%

C. Adjustment on ride complaint or out-of-round is allowed only during the first 2/32" of the original tread depth or 1 year from purchase date (proof of purchase required) whichever comes first.

#### **II. CASING CREDIT**

1. Casing of KUMHO radial commercial truck tires are warranted to remain serviceable through the second retreaded life for 66 months from the date of manufacture.

- 2. KLS02e, KLD11e, KLD02 (e), KLD01e and KLT12e casing warranty is valid through the second retreaded life for 72 months from the date of manufacture.
- 3. If an examination by KUMHO shows that a casing of a KUMHO radial truck tire delivers unsatisfactory service due to factors within the manufacturer's control, KUMHO will give a credit toward the purchase price of a comparable new KUMHO tire in the amount indicated in the Casing Credit table.

| Tire Size:  | Casing Value | Tire Size:  | Casing Value |
|-------------|--------------|-------------|--------------|
| 7.50R16     | \$30.00      | 12.00R24    | \$50.00      |
| 215/75R17.5 | \$30.00      | 12R22.5     | \$80.00      |
| 235/75R17.5 | \$30.00      | 315/80R22.5 | \$80.00      |
| 225/70R19.5 | \$30.00      | 385/65R22.5 | \$80.00      |
| 245/70R19.5 | \$30.00      | 425/65R22.5 | \$80.00      |
| 265/70R19.5 | \$30.00      | 445/65R22.5 | \$80.00      |
| 255/70R22.5 | \$50.00      | 11R22.5     | \$90.00      |
| 275/70R22.5 | \$50.00      | 295/75R22.5 | \$90.00      |
| 9.00R20     | \$50.00      | 11R24.5     | \$90.00      |
| 10R22.5     | \$50.00      | 285/75R24.5 | \$90.00      |
| 10.00R20    | \$50.00      |             |              |

### CONTACT US

#### For assistance, contact our customer service at 1-800-445-8646 (menu option) or your sales representative.

U.S. Headquarter Sales, Marketing & General Office 133 Peachtree Street NE, Suite 2800 Atlanta, GA 30303 1-(800) HI-KUMHO (445-8646) KumhoTire.com

**Distribution Location - Western Division** 10299 6th Street Rancho Cucamonga, CA 91730 (909) 428-3999

**Distribution Location - Southeast Division** 1240 Highway 155 South McDonough, GA 30253 (678) 593-1422

**Kumho Technical Center** 711 Kumho Drive Akron, OH 44333 (330) 666-4030

**Rebate Information** Kumhotireusarebates@360incentives.com 1-855-899-3764

Marketing/Product/Fitment Technical Support Information Marketing@KumhoTireUSA.com

Warranty Information Warranty@KumhoTireUSA.com

Sales Information Sales@KumhoTireUSA.com

Sales Information Sales@KumhoTireUSA.com

©Kumho Tire U.S.A., Inc. 4/2021

30 800-ні-кимно

\* \* \* \* \* \* \*

800-ні-кимно 31 

### NOTES

6 (F)

e e

| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
|---|------------------------------|----|-----------|---------------------|-----------|-------|--------|------|-----|-------|-------|-----|-------|-------|---------|-----|---|-----|---|-----|-------------|-------|-----|-------|-----|-----|-----|
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
| - |                              |    |           |                     |           |       |        |      |     |       |       | _   |       |       |         |     |   |     |   |     |             |       |     |       |     |     |     |
|   | воо-ні-кимно<br>воо-ні-кимно | ++ | + $+$ $+$ | $\Phi_{i} \Phi_{i}$ | + $+$ $+$ | 6 ÷ 3 | e de s | ÷.+. | + + | + $+$ | + $+$ | 4.5 | 6 (F) | + $+$ | $\pm 4$ | + + | + | • • | + | • • | $\Phi_{ij}$ | 6 (f) | + - | ÷ + ; |     | *** | * * |
|   |                              |    |           |                     |           |       |        |      |     |       |       |     |       |       |         |     |   |     |   |     |             |       |     |       | + + | + - | • • |

### NOTES

**.** •

÷.

÷. +.

| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
|---------------------------------------|----|-----|--------|-------|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|--------|--------|
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    | -   |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * | -  |     | -      |       |    |            |            |            |            |            |            |            | -          | -          | -          |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            | _          |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * * * * * * |    |     |        |       |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| + + + + + + + + + + + + + + + + + + + | *  | ۰.  | т.     | ۰.    | ۰. |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |
| * * * * * * * * * * * * * * *         |    |     |        | 00-   |    | +          | +          | +          | +          | $\Phi_{i}$ | $\Phi$     | $\Phi_{i}$ | $\Phi_{i}$ | +          | +          | $\Phi_{i}$ | $\Phi_{i}$ | $\Phi_{i}$ | ÷,         | ł. | ÷      | +      |
|                                       | UF | κυΜ | )-HI-ł | 800   |    | $\Phi_{i}$ | ÷  | $\Phi$ | $^{+}$ |
|                                       | j, | 4   | ы.     | de la |    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |        |        |

### NOTES

÷.+ e e

| 34 800-ні-кимно + + + + + | • • • • • • • • • • • • • • • • • • • | * * * * * * * * * * * * * * * * * * * * | <pre>+ + + + + + + + + + + + + + + + + + +</pre> |
|---------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------|

### NOTES

|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   | _ |   |  |
|---------|----|----|----|----|---|---|------------|------------|---|---|------------|---|------------|---|---|---|-----|---|---|---|--|
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   | _ |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   | _ |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
|         |    | +  | +  | -  | + | + | +          | +          | + | + | -          | + | -          | + | + | + | +   | + | + | + |  |
|         |    |    |    |    |   |   |            |            |   |   |            |   |            |   |   |   |     |   |   |   |  |
| + + + + | ÷, | ÷. | ÷, | ÷. | ÷ | ÷ | $\Phi_{i}$ | $\Phi_{i}$ | ٠ | ٠ | $\Phi_{i}$ | ÷ | $\Phi_{i}$ |   |   |   | KUM |   |   |   |  |

